1
(五)可再生能源发电及利用技术 可再生能源是世界各国科技创新部署的重点,是未来能源电力技术发展的方向。当前,以新能源为支点的我国能源转型体系正加速变革,大力发展新能源已经上升到国家战略高度,未来我国新能源还将大规模发展。 1、海上风力发电技术。欧洲海上风电起步早、发展快,全球已建成的海上风电90%位于欧洲,截至2014年,欧洲累计海上风电装机达到805万千瓦,分布在欧洲11个国家的74个海上风电场。欧洲6MW海上风电机组已形成产业化并批量安装,8MW海上风电机组进入样机试运行阶段。我国海上风电综合实力整体较弱,机组容量以3MW~4MW为主,6MW机组处于样机试验阶段,并且我国严重缺少海上风电施工经验、运行维护与专业监测亟需加强。到2020年,形成具备8MW及以上大型海上风机制造能力,突破海上风电施工和建设、并网运行关键技术;建成海上风电全景监视及综合控制系统。 中外海上风电厂家、项目介绍: 2016年6月,西门子与歌美飒签订约束性协议,合并双方的风电业务以打造全球风电市场的领先企业,尤其在海上风电项目上,西门子领跑全球海上风电市场。西门子已提出到2025年通过数字化和基础创新等方法使海上风电的度电成本降到8欧分/千瓦时以下,提高能源供应的竞争力加强气候保护。 丹麦是世界风电发展最快最好的国家,在1991年建成全球第一座海上风电场,拥有20多年的海上风电场运营经验,有完整的产业链,走在了世界前列。目前,欧洲三家公司具备生产8MW海上风电机组能力:丹麦维斯塔斯Vestas公司V164-8MW;Adwen公司AD-180-8MW;西门子首台SWT-8.0-154机组将于2017年初安装,预计将在2018年初获得机组型式认证。 2013年7月4日,全球最大近海风发电场--英国“伦敦阵列”,在英国东南海岸开始运营,装机容量630兆瓦,采用了德国西门子SWT-3.6-120涡轮机,安装地点是距离海岸20公里的海面上。已耗资15亿英镑的“伦敦阵列”绵延20公里,装备175台涡轮机,加强了英国在全球近海风力发电领域的优势地位。2016年5月,西门子将为苏格兰Beatrice海上风电场项目提供、安装并调试84个风力发电机组,每一个转子直径为154米,发电量可达7兆瓦。 目前,国内已有金风科技、华锐风电、联合动力、湘电股份和海装风电等厂家完成5MW及以上大型风电机组的吊装和试运行。亚洲首个海上风电场——上海东海大桥102MW海上风电示范项目的34台风机全部由华锐风电提供,已顺利运行5年,并成功走出质保进入后运维服务阶段。华能如东300兆瓦海上风电场工程是目前国内最大规模的海上风电场,该项目规划建设50台4兆瓦和20台5兆瓦海上风电机组,北区选取西门子4兆瓦风机和中船重工海装风电5兆瓦风机,南区则是远景风机,在国内首次大规模使用5兆瓦海上风机,预计2016年年底实现首批机组投产发电,2016年6月26日,金风科技首个近海海上项目三峡响水项目首台机组顺利完成吊装。响水项目为三峡集团首个海上示范商业运营项目,采用18台金风科技121/3000KW直驱海上型机组,项目离岸垂直距离6海里,水深5--9米。 2、太阳能光热发电技术。我国太阳能热发电起步较晚,我国太阳能光热发电在核心设备上与国外相比有很大差距,导致转换效率低,若使用国外产品则成本更高,由于投资成本高导致进展缓慢。重点突破光热电厂系统集成技术和机组运行技术,重点研发熔盐吸热介质的槽式集热管、线性菲涅尔集热系统、太阳能超临界CO2布雷顿循环发电系统和设备;推广太阳能光热发电系统,2020年建成西部多个太阳能光热发电示范项目。 槽式太阳能热发电技术。槽式太阳能热发电技术是目前商业化程度最高的一种太阳能热发电技术,主要采用导热油作为传热工质,通过油水换热器产生过热蒸汽,推动汽轮机发电。国际上,意大利于2003年开始进行连续性试验测试研究,2010年底,5MW阿基米德熔融盐抛物面槽式太阳能发电站在意大利西西里岛建成,并于2011年10月投入商业化运行,集热器出口熔融盐温度为560℃,汽轮机入口蒸汽参数10MPa/545℃。2014年7月,我国首个商业化槽式光热发电项目,中广核青海德令哈50MW槽式太阳能热发电项目正式开工,先期实验回路项目已经建设完成。 塔式太阳能发电技术。塔式太阳能热发电系统组成灵活度高,并且具有更高的聚光比,可以得到更高的系统运行温度和发电效率。西班牙Gemasolar电站于2011年5月投入商业化运行,装机容量19.9兆瓦,是全球首座采用熔融盐作为传热和储热介质的商业化塔式电站。Gemasolar的熔盐蓄热系统可在没有阳光的情况下持续发电15小时,夏季电站可实现24小时不间断供电,是世界上第一家实现全天供电的商业化太阳能光热电站。2016年2月22日,美国SolarReserve公司装机110MW的新月沙丘塔式熔盐光热电站现已正式并网发电,并实现了110MW的满功率输出。这标志着全球装机最大的塔式熔盐光热电站正式实现商业化运转,该电站因其采用领先的塔式熔盐技术,配10小时储热系统,首次在百兆瓦级规模上成功验证了塔式熔盐技术的可行性,而成为光热发电发展史上重要的里程碑。。2013年7月浙江中控青海德令哈10MW塔式太阳能热发电工程成功并网发电。这是中国第一个商业化运行的太阳能热发电示范工程。2014年8月,首航光热技术股份有限公司敦煌100MW+10MW熔盐塔式电站正式开工。一期建设容量为1&TImes;10MW,采用高温高压凝汽式汽轮发电机组,该项目带有储热系统,建成后可实现24小时连续发电。光热电站一般在50MW以上开始体现规模效益。该项目一期10MW为示范电站,规模较小,投资相对较大,尚难以产生规模效益。 碟式太阳能热发电技术。碟式太阳能热发电系统是通过斯特林循环或者布雷顿循环发电的太阳能热发电系统,其光学效率可达到90%,吸热器工作温度可达800℃以上,系统峰值光--电转化效率可达29.4%。碟式太阳能热发电系统可以采用空冷技术、仅消耗少量的水对聚光镜进行清洁等,减少对水资源的耗费,更适合沙漠、戈壁地带。2010年,全球首个碟式光热示范电站Maricopa电站在美国亚利桑那州投运,该项目由TesseraSolar开发,采用现已破产的SES斯特林能源系统公司的SunCatcher碟式发电设备,装机1.5MW,单个系统发电功率25KW,共采用了60个SunCatcher碟式斯特林发电机。2016年3月,国内首座碟式太阳能发电示范电站落户铜川,中航工业西安航空发动机有限公司投资建设的碟式太阳能实验基地建设现场,50台碟架发电设备主体安装到位。作为国内第一座兆瓦级碟式斯特林太阳能发电示范电站,项目建成后可年发电量126万度,同时为碟式太阳能热发电行业标准的建立提供依据,促进碟式太阳能热发电产业化。 线性菲涅尔太阳能热发电技术。线性菲涅尔太阳能热发电是通过吸收太阳能加热传热流体,通过热力循环进行发电。的菲涅尔光热电站成为最大的已投运菲涅尔电站。2014年11月,印度信实电力公司在Rajasthan邦投建的100MW菲涅尔光热电站项目正式并网发电,这使其成为目前全球最大的在运行菲涅尔光热发电项目。2012年10月,华能集团在海南三亚南山电站完成了1.5MW线性菲涅尔式示范项目。2015年3月,国内首个10MW线性菲涅尔式聚光太阳能发电示范项目落户甘肃敦煌,将成为我国首个采用线性菲涅尔聚光太阳能发电的大型集中式电站。2016年7月青海盐湖佛照蓝科锂业公司太阳能集热加温供水项目将建成投产,该项目建成后将成为我国甚至全球最大的线性菲涅尔太阳能集热供热站,也是首个将太阳能集热技术用于大工业供热的项目。 3、新能源发电功率高精度预测技术。风电、光伏发电等新能源发电出力具有随机性、波动性特点,大规模新能源并网将对电网安全稳定运行带来影响,不利于新能源消纳。国内对新能源发电预测能力不足,在应对复杂多变的资源条件、大规模新能源集群发电、极端天气事件等因素的准确度不高。重点突破新能源资源数值模拟与气象预报技术,重点研发具有自主知识产权的高精度新一代新能源功率预测系统,显著提高新能源功率预测精度,以广泛用于电力调度机构、风电场和光伏电站。 4、新能源发电优化调度技术。由于我国电源和电网结构特点,弃风弃光现象将在一段时间内继续存在,高比例新能源的调度运行技术有待进一步优化,具有不确定性的多种新能源联合优化调度技术有待进一步突破。 (六)水力发电技术 我国的大坝设计和建设、地下大型洞室设计和建设、大型水轮发电机制造等技术均已跻身世界先进水平行列。未来水电发展重点将在高坝工程防震抗震技术、超高坝建设技术、大型地下洞室群关键技术、流域梯级水电站联合调度运行技术、环境保护、移民安置与生态修复技术、数字化、智能化等方向。 1、超高坝建设技术。我国200m以上超高坝建设尚处于起步阶段,发展滞后国外20~50年。我国发展200m以上超高坝主要面临复杂性条件、缺乏技术标准、成套技术部成熟等挑战,需要联合协调攻关。2020年,全面掌握超高坝建设关键技术。完成超高坝安全性评价方法与安全标准、高碾压混凝土坝施工技术要求和质量控制标准、超高土心墙堆石安全评价方法与安全标准制定。 2、大型地下洞群关键技术。我国西部地区独特的环境使得地下洞群成为水电工程枢纽布置的最佳选择,地下洞群正朝着单机大容量、洞室大跨度、施工大规模和安全高要求的方向发展。2020年,预期掌握大型地下洞群系统关键技术,解决地下洞群工程建设中所面临的关键科学技术难题。 3、环境保护、移民安置与生态修复技术水电开发与生态环境保护问题已经成为我国水电可持续发展的重要制约因素,梯级开发的累积影响、鱼类繁衍、栖息地保护技术不足直接影响水电开发。2020年,掌握环境保护、移民安置与生态修复等关键技术,提出相应的环境保护对策措施,妥善处理好水电建设与环境保护的关系,实现合理开发水资源和维持河流生态系统功能。 4、高性能大容量水电机组技术。根据规划和我国水电建设现状,2030-2050年,随着西藏水电的开发,将有四个千万千瓦级水电站的运行水头超过400米,最大水头达830米,超高水头和超大容量水电将成为我国水电发展的主要方向。实现高性能大容量水电机组及相应配套的自主设计、制造与安装,满足我国到2050年前后水电开发,特别是西藏水电开发的需要,新型超高水头和超大容量的高性能水电机组研制将成为我国水电设备科研及制造的主攻方向。 5、数字化、智能化水电与研发。国家防汛抗旱总指挥部组织建设了七大流域的三维电子江河系统,中国水电工程顾问集团公司开展了“中国数字水电”基础信息工程建设,2020年,掌握数字化、智能化水电站研发系列关键技术,建成海量空间数据处理及基础、专业数据库体系及基础信息平台。 (七)先进核能发电技术 核能发电是我国能源战略的重要选择,核能技术是我国少数几个在世界上有望获得核心竞争力的高新技术领域,核电“走出去”作为国家战略进行部署的态势已逐渐明确。“十三五”期间,我国核电技术需要重点攻关和提高第三代压水堆核电技术和装备、研究开发第四代核电技术以及模块化小型核反应堆技术等。 1、第三代大型先进核电技术及装备。第三代核电已逐渐成为国内外核电发展的主流,我国压水堆设计、建设和运行管理水平已走在世界前列,具备自主设计建设第三代核电机组能力,如我国走在研发具有自主知识产权的“华龙一号”已获国家批准开工建设;CAP1400正等待国家审批;正在建设的山东石岛湾高温气冷堆核电站示范工程是我国核电重大专项的重要成果之一,为发展第四代核电技术奠定基础。2020年,我国将完善大型先进压水堆的各个环节,实现自主化、国产化,不受制于人,具备以完全拥有自主知识产权的中国核电品牌走向国际市场,彻底解决核废料安全处置问题。 2、第四代核电技术。第四代先进核反应堆共确定六种堆型,其中三种是快中子反应堆,钠冷快堆是其中技术最成熟的一种,其技术先进具备大规模工业开发基础。俄罗斯是最早发展快堆的国家之一,也是目前世界上运行快堆电站数目最多的国家;法国建设了3座快中子反应堆,是世界上第一个建设并运行过大型商用快堆的国家,处于国际领先水平;我国快堆正处于实验阶段,整体来说在示范应用、运行经验、建设掌握等方面整体水平低于俄罗斯、美国、法国和日本。到2020年,掌握第四代核电关键技术和先进反应堆的方案设计。 3、模块化小型核反应堆技术。小型堆具有安全性高、适用性广、占地小、建设周期短、投资低等特点,在发电同时可为工业供汽、城市供热、海水淡化提供蒸汽,实现电、热、水联产;也可应用于海岛、海上平台及大型船舶。世界上核能发达国家在发展大型核电机组同时,都在积极研发多用途模块式小型反应堆。美国、俄罗斯、韩国、阿根廷在小模块化反应堆技术方面走在前列,但世界范围内尚无小型模块化反应堆核电站投入商业运营。我国自20
|